赵走x博客
网站访问量:151935
首页
书籍
软件
工具
古诗词
搜索
登录
13、音乐篇
12、mobi 阅读器推荐
11、软著申请字体要求
精品推荐:10、面试资料
精品推荐:9、Flutter优秀库
精品推荐:8、百度网盘搜索方式
精品推荐:7、数据接口
精品推荐:6、书籍资料篇
精品推荐:5、python实用篇
4、前端常用框架篇
精品推荐:3、python爬虫篇
精品推荐:2、人工智能篇
谷歌搜索gitbook的方法
精品推荐:1、生活实用篇
常见文件的mime类型
精品推荐:2、人工智能篇
资源编号:75729
精品推荐
热度:81
人工智能篇
[ 1. ](https://hellogithub.com/periodical/volume/35/#gpt-2)[gpt-2](https://github.com/openai/gpt-2) OpenAI 发布的 15 亿参数量通用语言模型 GPT-2,迄今最大模型!展示了一种构建语言处理系统的潜在方式,即根据自然发生的演示学习执行任务。实例代码: ``` export PYTHONIOENCODING=UTF-8 python3 src/generate_unconditional_samples.py | tee samples python3 src/generate_unconditional_samples.py --top_k 40 --temperature 0.7 | tee samples python3 src/interactive_conditional_samples.py --top_k 40 ``` [ 2. ](https://hellogithub.com/periodical/volume/35/#deep-learning-drizzle)[deep-learning-drizzle](https://github.com/kmario23/deep-learning-drizzle) 世界计算机名校的深度学习、强化学习、机器学习、计算机视觉、自然语言处理等方面的公开课 [ 3. ](https://hellogithub.com/periodical/volume/35/#stanfordnlp)[stanfordnlp](https://github.com/stanfordnlp/stanfordnlp) 适用于多种人类语言的 Stanford NLP 官方 Python 库。包含用于运行 CoNLL 2018 共享任务的最新完全神经管道以及访问 Java Stanford CoreNLP 服务器的软件包。实例代码: ``` import stanfordnlp stanfordnlp.download('en') # This downloads the English models for the neural pipeline nlp = stanfordnlp.Pipeline() # This sets up a default neural pipeline in English doc = nlp("Barack Obama was born in Hawaii. He was elected president in 2008.") doc.sentences[0].print_dependencies() ``` [ 4. ](https://hellogithub.com/periodical/volume/35/#Tensorflow-Cookbook)[Tensorflow-Cookbook](https://github.com/taki0112/Tensorflow-Cookbook) 易学易用的 Tensorflow 教程 [5、machine-learning-for-software-engineers](https://hellogithub.com/periodical/statistics/click/?target=https://github.com/ZuzooVn/machine-learning-for-software-engineers):自上而下的学习路线,软件工程师的机器学习,[中文版](https://github.com/ZuzooVn/machine-learning-for-software-engineers/blob/master/README-zh-CN.md) [6、MLAlgorithms](https://hellogithub.com/periodical/statistics/click/?target=https://github.com/rushter/MLAlgorithms):常见的机器学习算法,Python 实现: * [Deep learning (MLP, CNN, RNN, LSTM)](https://github.com/rushter/MLAlgorithms/tree/master/mla/neuralnet) * [Linear regression, logistic regression](https://github.com/rushter/MLAlgorithms/blob/master/mla/linear_models.py) * [Random Forests](https://github.com/rushter/MLAlgorithms/blob/master/mla/ensemble/random_forest.py) * [Support vector machine (SVM) with kernels (Linear, Poly, RBF)](https://github.com/rushter/MLAlgorithms/tree/master/mla/svm) * [K-Means](https://github.com/rushter/MLAlgorithms/blob/master/mla/kmeans.py) [7、数据科学/人工智能比赛解决方案汇总](https://github.com/apachecn/awesome-data-comp-solution) 8、[ncnn](https://hellogithub.com/periodical/statistics/click/?target=https://github.com/Tencent/ncnn):腾讯开源的一个为手机端极致优化的高性能神经网络前向计算框架 9、[tutorials](https://hellogithub.com/periodical/statistics/click/?target=https://github.com/MorvanZhou/tutorials):机器学习入门教程,十分详细包含视频教程、文字教程 10、[TensorFlow-World](https://hellogithub.com/periodical/statistics/click/?target=https://github.com/astorfi/TensorFlow-World):简单易用的 TensorFlow 教程 11、[EffectiveTensorflow](https://hellogithub.com/periodical/statistics/click/?target=https://github.com/vahidk/EffectiveTensorflow):TensorFlow 最佳实践 12、[deeplearningbook-chinese](https://hellogithub.com/periodical/statistics/click/?target=https://github.com/exacity/deeplearningbook-chinese):Deep Learning 中文版