赵走x博客
网站访问量:151482
首页
书籍
软件
工具
古诗词
搜索
登录
十分钟入门 Pandas
十分钟入门 Pandas
资源编号:551739
热度:91
本节是帮助 Pandas 新手快速上手的简介。烹饪指南里介绍了更多实用案例
# 十分钟入门 Pandas 本节是帮助 Pandas 新手快速上手的简介。[烹饪指南](/docs/user_guide/cookbook.html)里介绍了更多实用案例。 本节以下列方式导入 Pandas 与 NumPy: ``` python In [1]: import numpy as np In [2]: import pandas as pd ``` ## 生成对象 详见[数据结构简介](/docs/getting_started/dsintro.html#dsintro)文档。 用值列表生成 [Series](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series) 时,Pandas 默认自动生成整数索引: ``` python In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8]) In [4]: s Out[4]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64 ``` 用含日期时间索引与标签的 NumPy 数组生成 [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame): ``` python In [5]: dates = pd.date_range('20130101', periods=6) In [6]: dates Out[6]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) In [8]: df Out[8]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 ``` 用 Series 字典对象生成 DataFrame: ``` python In [9]: df2 = pd.DataFrame({'A': 1., ...: 'B': pd.Timestamp('20130102'), ...: 'C': pd.Series(1, index=list(range(4)), dtype='float32'), ...: 'D': np.array([3] * 4, dtype='int32'), ...: 'E': pd.Categorical(["test", "train", "test", "train"]), ...: 'F': 'foo'}) ...: In [10]: df2 Out[10]: A B C D E F 0 1.0 2013-01-02 1.0 3 test foo 1 1.0 2013-01-02 1.0 3 train foo 2 1.0 2013-01-02 1.0 3 test foo 3 1.0 2013-01-02 1.0 3 train foo ``` DataFrame 的列有不同[数据类型](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes)。 ``` python In [11]: df2.dtypes Out[11]: A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object ``` IPython支持 tab 键自动补全列名与公共属性。下面是部分可自动补全的属性: ``` python In [12]: df2.
# noqa: E225, E999 df2.A df2.bool df2.abs df2.boxplot df2.add df2.C df2.add_prefix df2.clip df2.add_suffix df2.clip_lower df2.align df2.clip_upper df2.all df2.columns df2.any df2.combine df2.append df2.combine_first df2.apply df2.compound df2.applymap df2.consolidate df2.D ``` 列 A、B、C、D 和 E 都可以自动补全;为简洁起见,此处只显示了部分属性。 ## 查看数据 详见[基础用法](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics)文档。 下列代码说明如何查看 DataFrame 头部和尾部数据: ``` python In [13]: df.head() Out[13]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [14]: df.tail(3) Out[14]: A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 ``` 显示索引与列名: ``` python In [15]: df.index Out[15]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [16]: df.columns Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object') ``` [DataFrame.to_numpy()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_numpy.html#pandas.DataFrame.to_numpy) 输出底层数据的 NumPy 对象。注意,[DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame) 的列由多种数据类型组成时,该操作耗费系统资源较大,这也是 Pandas 和 NumPy 的本质区别:**NumPy 数组只有一种数据类型,DataFrame 每列的数据类型各不相同**。调用 [DataFrame.to_numpy()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_numpy.html#pandas.DataFrame.to_numpy) 时,Pandas 查找支持 DataFrame 里所有数据类型的 NumPy 数据类型。还有一种数据类型是 `object`,可以把 DataFrame 列里的值强制转换为 Python 对象。 下面的 `df` 这个 [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame) 里的值都是浮点数,[DataFrame.to_numpy()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_numpy.html#pandas.DataFrame.to_numpy) 的操作会很快,而且不复制数据。 ``` python In [17]: df.to_numpy() Out[17]: array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]]) ``` `df2` 这个 [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame) 包含了多种类型,[DataFrame.to_numpy()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_numpy.html#pandas.DataFrame.to_numpy) 操作就会耗费较多资源。 ``` python In [18]: df2.to_numpy() Out[18]: array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object) ``` ::: tip 提醒 [DataFrame.to_numpy()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_numpy.html#pandas.DataFrame.to_numpy) 的输出不包含行索引和列标签。 ::: [describe()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html#pandas.DataFrame.describe) 可以快速查看数据的统计摘要: ``` python In [19]: df.describe() Out[19]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804 ``` 转置数据: ``` python In [20]: df.T Out[20]: 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690 B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648 C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427 D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988 ``` 按轴排序: ``` python In [21]: df.sort_index(axis=1, ascending=False) Out[21]: D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690 ``` 按值排序: ``` python In [22]: df.sort_values(by='B') Out[22]: A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 ``` ## 选择 ::: tip 提醒 选择、设置标准 Python / Numpy 的表达式已经非常直观,交互也很方便,但对于生产代码,我们还是推荐优化过的 Pandas 数据访问方法:`.at`、`.iat`、`.loc` 和 `.iloc`。 ::: 详见[索引与选择数据](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing)、[多层索引与高级索引](https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced)文档。 ### 获取数据 选择单列,产生 `Series`,与 `df.A` 等效: ``` python In [23]: df['A'] Out[23]: 2013-01-01 0.469112 2013-01-02 1.212112 2013-01-03 -0.861849 2013-01-04 0.721555 2013-01-05 -0.424972 2013-01-06 -0.673690 Freq: D, Name: A, dtype: float64 ``` 用 [ ] 切片行: ``` python In [24]: df[0:3] Out[24]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['20130102':'20130104'] Out[25]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 ``` ### 按标签选择 详见[按标签选择](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-label)。 用标签提取一行数据: ``` python In [26]: df.loc[dates[0]] Out[26]: A 0.469112 B -0.282863 C -1.509059 D -1.135632 Name: 2013-01-01 00:00:00, dtype: float64 ``` 用标签选择多列数据: ``` python In [27]: df.loc[:, ['A', 'B']] Out[27]: A B 2013-01-01 0.469112 -0.282863 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 2013-01-06 -0.673690 0.113648 ``` 用标签切片,包含行与列结束点: ``` python In [28]: df.loc['20130102':'20130104', ['A', 'B']] Out[28]: A B 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 ``` 返回对象降维: ``` python In [29]: df.loc['20130102', ['A', 'B']] Out[29]: A 1.212112 B -0.173215 Name: 2013-01-02 00:00:00, dtype: float64 ``` 提取标量值: ``` python In [30]: df.loc[dates[0], 'A'] Out[30]: 0.46911229990718628 ``` 快速访问标量,与上述方法等效: ``` python In [31]: df.at[dates[0], 'A'] Out[31]: 0.46911229990718628 ``` ### 按位置选择 详见[按位置选择](http://Pandas.pydata.org/Pandas-docs/stable/indexing.html#indexing-integer)。 用整数位置选择: ``` python In [32]: df.iloc[3] Out[32]: A 0.721555 B -0.706771 C -1.039575 D 0.271860 Name: 2013-01-04 00:00:00, dtype: float64 ``` 类似 NumPy / Python,用整数切片: ``` python In [33]: df.iloc[3:5, 0:2] Out[33]: A B 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 ``` 类似 NumPy / Python,用整数列表按位置切片: ``` python In [34]: df.iloc[[1, 2, 4], [0, 2]] Out[34]: A C 2013-01-02 1.212112 0.119209 2013-01-03 -0.861849 -0.494929 2013-01-05 -0.424972 0.276232 ``` 显式整行切片: ``` python In [35]: df.iloc[1:3, :] Out[35]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 ``` 显式整列切片: ``` python In [36]: df.iloc[:, 1:3] Out[36]: B C 2013-01-01 -0.282863 -1.509059 2013-01-02 -0.173215 0.119209 2013-01-03 -2.104569 -0.494929 2013-01-04 -0.706771 -1.039575 2013-01-05 0.567020 0.276232 2013-01-06 0.113648 -1.478427 ``` 显式提取值: ``` python In [37]: df.iloc[1, 1] Out[37]: -0.17321464905330858 ``` 快速访问标量,与上述方法等效: ``` python In [38]: df.iat[1, 1] Out[38]: -0.17321464905330858 ``` ### 布尔索引 用单列的值选择数据: ``` python In [39]: df[df.A > 0] Out[39]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 ``` 选择 DataFrame 里满足条件的值: ``` python In [40]: df[df > 0] Out[40]: A B C D 2013-01-01 0.469112 NaN NaN NaN 2013-01-02 1.212112 NaN 0.119209 NaN 2013-01-03 NaN NaN NaN 1.071804 2013-01-04 0.721555 NaN NaN 0.271860 2013-01-05 NaN 0.567020 0.276232 NaN 2013-01-06 NaN 0.113648 NaN 0.524988 ``` 用 [isin()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.isin.html#pandas.Series.isin) 筛选: ``` python In [41]: df2 = df.copy() In [42]: df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three'] In [43]: df2 Out[43]: A B C D E 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2['E'].isin(['two', 'four'])] Out[44]: A B C D E 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four ``` ### 赋值 用索引自动对齐新增列的数据: ``` python In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6)) In [46]: s1 Out[46]: 2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64 In [47]: df['F'] = s1 ``` 按标签赋值: ``` python In [48]: df.at[dates[0], 'A'] = 0 ``` 按位置赋值: ``` python In [49]: df.iat[0, 1] = 0 ``` 按 NumPy 数组赋值: ``` python In [50]: df.loc[:, 'D'] = np.array([5] * len(df)) ``` 上述赋值结果: ``` python In [51]: df Out[51]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 2013-01-05 -0.424972 0.567020 0.276232 5 4.0 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0 ``` 用 `where` 条件赋值: ``` python In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0 ``` ## 缺失值 Pandas 主要用 `np.nan` 表示缺失数据。 计算时,默认不包含空值。详见[缺失数据](https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data)。 重建索引(reindex)可以更改、添加、删除指定轴的索引,并返回数据副本,即不更改原数据。 ``` python In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E']) In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1 In [57]: df1 Out[57]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN ``` 删除所有含缺失值的行: ``` python In [58]: df1.dropna(how='any') Out[58]: A B C D F E 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 ``` 填充缺失值: ``` python In [59]: df1.fillna(value=5) Out[59]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0 ``` 提取 `nan` 值的布尔掩码: ``` python In [60]: pd.isna(df1) Out[60]: A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True ``` ## 运算 详见[二进制操作](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-binop)。 ### 统计 一般情况下,运算时**排除**缺失值。 描述性统计: ``` python In [61]: df.mean() Out[61]: A -0.004474 B -0.383981 C -0.687758 D 5.000000 F 3.000000 dtype: float64 ``` 在另一个轴(即,行)上执行同样的操作: ``` python In [62]: df.mean(1) Out[62]: 2013-01-01 0.872735 2013-01-02 1.431621 2013-01-03 0.707731 2013-01-04 1.395042 2013-01-05 1.883656 2013-01-06 1.592306 Freq: D, dtype: float64 ``` 不同维度对象运算时,要先对齐。 此外,Pandas 自动沿指定维度广播。 ``` python In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2) In [64]: s Out[64]: 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1.0 2013-01-04 3.0 2013-01-05 5.0 2013-01-06 NaN Freq: D, dtype: float64 In [65]: df.sub(s, axis='index') Out[65]: A B C D F 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0 2013-01-06 NaN NaN NaN NaN NaN ``` ### Apply 函数 Apply 函数处理数据: ``` python In [66]: df.apply(np.cumsum) Out[66]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0 In [67]: df.apply(lambda x: x.max() - x.min()) Out[67]: A 2.073961 B 2.671590 C 1.785291 D 0.000000 F 4.000000 dtype: float64 ``` ### 直方图 详见[直方图与离散化](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-discretization)。 ``` python In [68]: s = pd.Series(np.random.randint(0, 7, size=10)) In [69]: s Out[69]: 0 4 1 2 2 1 3 2 4 6 5 4 6 4 7 6 8 4 9 4 dtype: int64 In [70]: s.value_counts() Out[70]: 4 5 6 2 2 2 1 1 dtype: int64 ``` ### 字符串方法 Series 的 `str` 属性包含一组字符串处理功能,如下列代码所示。注意,`str` 的模式匹配默认使用[正则表达式](https://docs.python.org/3/library/re.html)。详见[矢量字符串方法](https://pandas.pydata.org/pandas-docs/stable/user_guide/text.html#text-string-methods)。 ``` python In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [72]: s.str.lower() Out[72]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object ``` ## 合并(Merge) ### 结合(Concat) Pandas 提供了多种将 Series、DataFrame 对象组合在一起的功能,用索引与关联代数功能的多种设置逻辑可执行连接(join)与合并(merge)操作。 详见[合并](https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#merging)。 [`concat()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat) 用于连接 Pandas 对象: ``` python In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df Out[74]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 # 分解为多组 In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces) Out[76]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 ``` ### 连接(join) SQL 风格的合并。 详见[数据库风格连接](https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#merging-join)。 ``` python In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) In [79]: left Out[79]: key lval 0 foo 1 1 foo 2 In [80]: right Out[80]: key rval 0 foo 4 1 foo 5 In [81]: pd.merge(left, right, on='key') Out[81]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5 ``` 这里还有一个例子: ``` python In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]}) In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]}) In [84]: left Out[84]: key lval 0 foo 1 1 bar 2 In [85]: right Out[85]: key rval 0 foo 4 1 bar 5 In [86]: pd.merge(left, right, on='key') Out[86]: key lval rval 0 foo 1 4 1 bar 2 5 ``` ### 追加(Append) 为 DataFrame 追加行。详见[追加](https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#merging-concatenation)文档。 ``` python In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D']) In [88]: df Out[88]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 In [89]: s = df.iloc[3] In [90]: df.append(s, ignore_index=True) Out[90]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 8 1.453749 1.208843 -0.080952 -0.264610 ``` ## 分组(Grouping) “group by” 指的是涵盖下列一项或多项步骤的处理流程: * **分割**:按条件把数据分割成多组; * **应用**:为每组单独应用函数; * **组合**:将处理结果组合成一个数据结构。 详见[分组](https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#groupby)。 ``` python In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', ....: 'foo', 'bar', 'foo', 'foo'], ....: 'B': ['one', 'one', 'two', 'three', ....: 'two', 'two', 'one', 'three'], ....: 'C': np.random.randn(8), ....: 'D': np.random.randn(8)}) ....: In [92]: df Out[92]: A B C D 0 foo one -1.202872 -0.055224 1 bar one -1.814470 2.395985 2 foo two 1.018601 1.552825 3 bar three -0.595447 0.166599 4 foo two 1.395433 0.047609 5 bar two -0.392670 -0.136473 6 foo one 0.007207 -0.561757 7 foo three 1.928123 -1.623033 ``` 先分组,再用 [`sum()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sum.html#pandas.DataFrame.sum)函数计算每组的汇总数据: ``` python In [93]: df.groupby('A').sum() Out[93]: C D A bar -2.802588 2.42611 foo 3.146492 -0.63958 ``` 多列分组后,生成多层索引,也可以应用 `sum` 函数: ``` python In [94]: df.groupby(['A', 'B']).sum() Out[94]: C D A B bar one -1.814470 2.395985 three -0.595447 0.166599 two -0.392670 -0.136473 foo one -1.195665 -0.616981 three 1.928123 -1.623033 two 2.414034 1.600434 ``` ## 重塑(Reshaping) 详见[多层索引](https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced-hierarchical)与[重塑](https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html#reshaping-stacking)。 ### 堆叠(Stack) ``` python In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', ....: 'foo', 'foo', 'qux', 'qux'], ....: ['one', 'two', 'one', 'two', ....: 'one', 'two', 'one', 'two']])) ....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [98]: df2 = df[:4] In [99]: df2 Out[99]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230 ``` [`stack()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.stack.html#pandas.DataFrame.stack)方法把 DataFrame 列压缩至一层: ``` python In [100]: stacked = df2.stack() In [101]: stacked Out[101]: first second B -0.542108 two A 0.282696 B -0.087302 baz one A -1.575170 B 1.771208 two A 0.816482 B 1.100230 dtype: float64 ``` **压缩**后的 DataFrame 或 Series 具有多层索引, [`stack()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.stack.html#pandas.DataFrame.stack) 的逆操作是 [`unstack()`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.unstack.html#pandas.DataFrame.unstack),默认为拆叠最后一层: ``` python In [102]: stacked.unstack() Out[102]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230 In [103]: stacked.unstack(1) Out[103]: second one two first bar A 0.029399 0.282696 B -0.542108 -0.087302 baz A -1.575170 0.816482 B 1.771208 1.100230 In [104]: stacked.unstack(0) Out[104]: first bar baz second one A 0.029399 -1.575170 B -0.542108 1.771208 two A 0.282696 0.816482 B -0.087302 1.100230 ``` ## 数据透视表(Pivot Tables) 详见[数据透视表](https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html#reshaping-pivot)。 ``` python In [105]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3, .....: 'B': ['A', 'B', 'C'] * 4, .....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, .....: 'D': np.random.randn(12), .....: 'E': np.random.randn(12)}) .....: In [106]: df Out[106]: A B C D E 0 one A foo 1.418757 -0.179666 1 one B foo -1.879024 1.291836 2 two C foo 0.536826 -0.009614 3 three A bar 1.006160 0.392149 4 one B bar -0.029716 0.264599 5 one C bar -1.146178 -0.057409 6 two A foo 0.100900 -1.425638 7 three B foo -1.035018 1.024098 8 one C foo 0.314665 -0.106062 9 one A bar -0.773723 1.824375 10 two B bar -1.170653 0.595974 11 three C bar 0.648740 1.167115 ``` 用上述数据生成数据透视表非常简单: ``` python In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C']) Out[107]: C bar foo A B one A -0.773723 1.418757 B -0.029716 -1.879024 C -1.146178 0.314665 three A 1.006160 NaN B NaN -1.035018 C 0.648740 NaN two A NaN 0.100900 B -1.170653 NaN C NaN 0.536826 ``` ## 时间序列(TimeSeries) Pandas 为频率转换时重采样提供了虽然简单易用,但强大高效的功能,如,将秒级的数据转换为 5 分钟为频率的数据。这种操作常见于财务应用程序,但又不仅限于此。详见[时间序列](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries)。 ``` python In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S') In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [110]: ts.resample('5Min').sum() Out[110]: 2012-01-01 25083 Freq: 5T, dtype: int64 ``` 时区表示: ``` python In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') In [112]: ts = pd.Series(np.random.randn(len(rng)), rng) In [113]: ts Out[113]: 2012-03-06 0.464000 2012-03-07 0.227371 2012-03-08 -0.496922 2012-03-09 0.306389 2012-03-10 -2.290613 Freq: D, dtype: float64 In [114]: ts_utc = ts.tz_localize('UTC') In [115]: ts_utc Out[115]: 2012-03-06 00:00:00+00:00 0.464000 2012-03-07 00:00:00+00:00 0.227371 2012-03-08 00:00:00+00:00 -0.496922 2012-03-09 00:00:00+00:00 0.306389 2012-03-10 00:00:00+00:00 -2.290613 Freq: D, dtype: float64 ``` 转换成其它时区: ``` python In [116]: ts_utc.tz_convert('US/Eastern') Out[116]: 2012-03-05 19:00:00-05:00 0.464000 2012-03-06 19:00:00-05:00 0.227371 2012-03-07 19:00:00-05:00 -0.496922 2012-03-08 19:00:00-05:00 0.306389 2012-03-09 19:00:00-05:00 -2.290613 Freq: D, dtype: float64 ``` 转换时间段: ``` python In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M') In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng) In [119]: ts Out[119]: 2012-01-31 -1.134623 2012-02-29 -1.561819 2012-03-31 -0.260838 2012-04-30 0.281957 2012-05-31 1.523962 Freq: M, dtype: float64 In [120]: ps = ts.to_period() In [121]: ps Out[121]: 2012-01 -1.134623 2012-02 -1.561819 2012-03 -0.260838 2012-04 0.281957 2012-05 1.523962 Freq: M, dtype: float64 In [122]: ps.to_timestamp() Out[122]: 2012-01-01 -1.134623 2012-02-01 -1.561819 2012-03-01 -0.260838 2012-04-01 0.281957 2012-05-01 1.523962 Freq: MS, dtype: float64 ``` Pandas 函数可以很方便地转换时间段与时间戳。下例把以 11 月为结束年份的季度频率转换为下一季度月末上午 9 点: ``` python In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') In [124]: ts = pd.Series(np.random.randn(len(prng)), prng) In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9 In [126]: ts.head() Out[126]: 1990-03-01 09:00 -0.902937 1990-06-01 09:00 0.068159 1990-09-01 09:00 -0.057873 1990-12-01 09:00 -0.368204 1991-03-01 09:00 -1.144073 Freq: H, dtype: float64 ``` ## 类别型(Categoricals) Pandas 的 DataFrame 里可以包含类别数据。完整文档详见[类别简介](https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#categorical) 和 [API 文档](https://pandas.pydata.org/pandas-docs/stable/reference/arrays.html#api-arrays-categorical)。 ``` python In [127]: df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], .....: "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) .....: ``` 将 `grade` 的原生数据转换为类别型数据: ``` python In [128]: df["grade"] = df["raw_grade"].astype("category") In [129]: df["grade"] Out[129]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e] ``` 用有含义的名字重命名不同类型,调用 `Series.cat.categories`。 ``` python In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"] ``` 重新排序各类别,并添加缺失类,`Series.cat` 的方法默认返回新 `Series`。 ``` python In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", .....: "good", "very good"]) .....: In [132]: df["grade"] Out[132]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad, bad, medium, good, very good] ``` 注意,这里是按生成类别时的顺序排序,不是按词汇排序: ``` python In [133]: df.sort_values(by="grade") Out[133]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good ``` 按类列分组(groupby)时,即便某类别为空,也会显示: ``` python In [134]: df.groupby("grade").size() Out[134]: grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64 ``` ## 可视化 详见[可视化](https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html#visualization)文档。 ``` python In [135]: ts = pd.Series(np.random.randn(1000), .....: index=pd.date_range('1/1/2000', periods=1000)) .....: In [136]: ts = ts.cumsum() In [137]: ts.plot() Out[137]:
```  DataFrame 的 [plot()](https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html#visualization) 方法可以快速绘制所有带标签的列: ``` python In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, .....: columns=['A', 'B', 'C', 'D']) .....: In [139]: df = df.cumsum() In [140]: plt.figure() Out[140]:
In [141]: df.plot() Out[141]:
In [142]: plt.legend(loc='best') Out[142]:
```  ## 数据输入 / 输出 ### CSV [写入 CSV 文件](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-store-in-csv)。 ``` python In [143]: df.to_csv('foo.csv') ``` 读取 CSV 文件数据: ``` python In [144]: pd.read_csv('foo.csv') Out[144]: Unnamed: 0 A B C D 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 .. ... ... ... ... ... 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns] ``` ### HDF5 详见 [HDFStores](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-hdf5) 文档。 写入 HDF5 Store: ``` python In [145]: df.to_hdf('foo.h5', 'df') ``` 读取 HDF5 Store: ``` python In [146]: pd.read_hdf('foo.h5', 'df') Out[146]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns] ``` ### Excel 详见 [Excel](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-excel) 文档。 写入 Excel 文件: ``` python In [147]: df.to_excel('foo.xlsx', sheet_name='Sheet1') ``` 读取 Excel 文件: ``` python In [148]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']) Out[148]: Unnamed: 0 A B C D 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 .. ... ... ... ... ... 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns] ``` ## 各种坑(Gotchas) 执行某些操作,将触发异常,如: ``` python >>> if pd.Series([False, True, False]): ... print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all(). ``` 参阅[比较操作](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-compare)文档,查看错误提示与解决方案。 详见[各种坑](https://pandas.pydata.org/Pandas-docs/stable/gotchas.html#gotchas)文档。