赵走x博客
网站访问量:151553
首页
书籍
软件
工具
古诗词
搜索
登录
深入浅出Python机器学习:31、自动特征选择
深入浅出Python机器学习:30、数据“升维”
深入浅出Python机器学习:29、数据表达
深入浅出Python机器学习:28、聚类算法
深入浅出Python机器学习:27、特征提取
深入浅出Python机器学习:26、数据降维
深入浅出Python机器学习:25、数据预处理
深入浅出Python机器学习:24、神经网络实例一一手写识别
深入浅出Python机器学习:23、神经网络的原理及使用
深入浅出Python机器学习:22、神经网络的前世今生
深入浅出Python机器学习:21、SVM 实例一一波士顿房价回归分析
深入浅出Python机器学习:20、SVM 的核函数与参数选择
深入浅出Python机器学习:19、支持向量机SVM 基本概念
深入浅出Python机器学习:18、随机森林实例一一要不要和中目亲对象进一步发展
深入浅出Python机器学习:17、随机森林
深入浅出Python机器学习:16、决策树
深入浅出Python机器学习:15、朴素贝叶斯实战一一判断肿瘤是良性还是恶性
深入浅出Python机器学习:14、朴素贝叶斯算法的不同方法
深入浅出Python机器学习:13、朴素贝叶斯基本概念
深入浅出Python机器学习:12、使用L1 正则化的线性模型一一套索回归
深入浅出Python机器学习:11、使用L2 正则化的线性模型一一岭回归
深入浅出Python机器学习:10、最基本的线性模型一一线性回归
深入浅出Python机器学习:9、线性模型的墓本概念
深入浅出Python机器学习:8、K 最近邻算法项目实战一一酒的分类
深入浅出Python机器学习:7、K最近邻算法用于回归分析
深入浅出Python机器学习:6、K最近邻算法处理多元分类任务
深入浅出Python机器学习:5、k最近邻算法在分类任务中的应用
深入浅出Python机器学习:4、K 最近邻算法的原理
深入浅出Python机器学习:3、一些必需库的安装及功能简介
深入浅出Python机器学习:2、基于python i吾言的环境配置
深入浅出Python机器学习:1、概述
人脸数据集加载faces = fetch_lfw_people()报错
31、直方图
74、插件开发:Android端API实现
Python3之socket编程--3:基于UDP的套接字
15、使用 jQuery 处理 Ajax 请求
Python3之socket编程--3:基于UDP的套接字
资源编号:76287
人工智能
深入浅出Python机器学习
热度:1887
未完待续
# 六、基于UDP的套接字 ### udp服务端 ``` ss = socket() #创建一个服务器的套接字 ss.bind() #绑定服务器套接字 inf_loop: #服务器无限循环 cs = ss.recvfrom()/ss.sendto() # 对话(接收与发送) ss.close() # 关闭服务器套接字 udp客户端 cs = socket() # 创建客户套接字 comm_loop: # 通讯循环 cs.sendto()/cs.recvfrom() # 对话(发送/接收) cs.close() # 关闭客户套接字 ``` ### 示例 ##### 服务端 ``` import socket ip_port=('127.0.0.1',9000) BUFSIZE=1024 udp_server_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) udp_server_client.bind(ip_port) while True: msg,addr=udp_server_client.recvfrom(BUFSIZE) print(msg,addr) udp_server_client.sendto(msg.upper(),addr) ``` #### 客户端 ``` import socket ip_port=('127.0.0.1',9000) BUFSIZE=1024 udp_server_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) while True: msg=input('>>: ').strip() if not msg:continue udp_server_client.sendto(msg.encode('utf-8'),ip_port) back_msg,addr=udp_server_client.recvfrom(BUFSIZE) print(back_msg.decode('utf-8'),addr) ``` ##### 输出 客户端 ``` >>: 123 123 ('127.0.0.1', 9000) >>: 3 3 ('127.0.0.1', 9000) >>: 4 4 ('127.0.0.1', 9000) ``` 服务端 ``` b'123' ('127.0.0.1', 53066) b'3' ('127.0.0.1', 53066) b'4' ('127.0.0.1', 53066) ``` ### 模拟QQ聊天,多个客户端和服务端通信 ##### 服务端 ``` import socket ip_port=('127.0.0.1',8081) udp_server_sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) #买手机 udp_server_sock.bind(ip_port) while True: qq_msg,addr=udp_server_sock.recvfrom(1024) print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],qq_msg.decode('utf-8'))) back_msg=input('回复消息: ').strip() udp_server_sock.sendto(back_msg.encode('utf-8'),addr) ``` ##### 客户端1 ``` import socket BUFSIZE=1024 udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) qq_name_dic={ 'TOM':('127.0.0.1',8081), 'JACK':('127.0.0.1',8081), '一棵树':('127.0.0.1',8081), '武大郎':('127.0.0.1',8081), } while True: qq_name=input('请选择聊天对象: ').strip() while True: msg=input('请输入消息,回车发送: ').strip() if msg == 'quit':break if not msg or not qq_name or qq_name not in qq_name_dic:continue udp_client_socket.sendto(msg.encode('utf-8'),qq_name_dic[qq_name]) back_msg,addr=udp_client_socket.recvfrom(BUFSIZE) print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],back_msg.decode('utf-8'))) udp_client_socket.close() ``` ##### 客户端2 ``` import socket BUFSIZE=1024 udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) qq_name_dic={ 'TOM':('127.0.0.1',8081), 'JACK':('127.0.0.1',8081), '一棵树':('127.0.0.1',8081), '武大郎':('127.0.0.1',8081), } while True: qq_name=input('请选择聊天对象: ').strip() while True: msg=input('请输入消息,回车发送: ').strip() if msg == 'quit':break if not msg or not qq_name or qq_name not in qq_name_dic:continue udp_client_socket.sendto(msg.encode('utf-8'),qq_name_dic[qq_name]) back_msg,addr=udp_client_socket.recvfrom(BUFSIZE) print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],back_msg.decode('utf-8'))) udp_client_socket.close() ``` ##### 输出 客户端1 ``` 请选择聊天对象: JACK 请输入消息,回车发送: 约不 来自[127.0.0.1:8081]的一条消息:不约 请输入消息,回车发送: ``` 客户端2 ``` 请选择聊天对象: TOM 请输入消息,回车发送: 123 来自[127.0.0.1:8081]的一条消息:321 请输入消息,回车发送: ``` 服务端 ``` 来自[127.0.0.1:62851]的一条消息:123 回复消息: 321 来自[127.0.0.1:60378]的一条消息:约不 回复消息: 不约 ``` # 七、recv与recvfrom 发消息,都是将数据发送到己端的发送缓冲中,收消息都是从己端的缓冲区中收。 ``` tcp:send发消息,recv收消息 udp:sendto发消息,recvfrom收消息 ``` ### 1.send与sendinto tcp是基于数据流的,而udp是基于数据报的: * send(bytes_data):发送数据流,数据流bytes_data若为空,自己这段的缓冲区也为空,操作系统不会控制tcp协议发空包 * sendinto(bytes_data,ip_port):发送数据报,bytes_data为空,还有ip_port,所有即便是发送空的bytes_data,数据报其实也不是空的,自己这端的缓冲区收到内容,操作系统就会控制udp协议发包。 ### 2.recv与recvfrom ##### tcp协议: (1)如果收消息缓冲区里的数据为空,那么recv就会阻塞(阻塞很简单,就是一直在等着收) (2)只不过tcp协议的客户端send一个空数据就是真的空数据,客户端即使有无穷个send空,也跟没有一个样。 (3)tcp基于链接通信 基于链接,则需要listen(backlog),指定半连接池的大小 基于链接,必须先运行的服务端,然后客户端发起链接请求 对于mac系统:如果一端断开了链接,那另外一端的链接也跟着完蛋recv将不会阻塞,收到的是空(解决方法是:服务端在收消息后加上if判断,空消息就break掉通信循环) 对于windows/linux系统:如果一端断开了链接,那另外一端的链接也跟着完蛋recv将不会阻塞,收到的是空(解决方法是:服务端通信循环内加异常处理,捕捉到异常后就break掉通讯循环) ##### udp协议 (1)如果如果收消息缓冲区里的数据为“空”,recvfrom也会阻塞 (2)只不过udp协议的客户端sendinto一个空数据并不是真的空数据(包含:空数据+地址信息,得到的报仍然不会为空),所以客户端只要有一个sendinto(不管是否发送空数据,都不是真的空数据),服务端就可以recvfrom到数据。 (3)udp无链接 无链接,因而无需listen(backlog),更加没有什么连接池之说了 无链接,udp的sendinto不用管是否有一个正在运行的服务端,可以己端一个劲的发消息,只不过数据丢失 recvfrom收的数据小于sendinto发送的数据时,在mac和linux系统上数据直接丢失,在windows系统上发送的比接收的大直接报错 只有sendinto发送数据没有recvfrom收数据,数据丢失 注意: 1.你单独运行上面的udp的客户端,你发现并不会报错,相反tcp却会报错,因为udp协议只负责把包发出去,对方收不收,我根本不管,而tcp是基于链接的,必须有一个服务端先运行着,客户端去跟服务端建立链接然后依托于链接才能传递消息,任何一方试图把链接摧毁都会导致对方程序的崩溃。 2.上面的udp程序,你注释任何一条客户端的sendinto,服务端都会卡住,为什么?因为服务端有几个recvfrom就要对应几个sendinto,哪怕是sendinto(b'')那也要有。 基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig) 客户端 复制代码 import socket BUFSIZE=1024 ip_port=('127.0.0.1',8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) res=s.connect_ex(ip_port) while True: msg=input('>>: ').strip() if len(msg) == 0:continue if msg == 'quit':break s.send(msg.encode('utf-8')) act_res=s.recv(BUFSIZE) print(act_res.decode('utf-8'),end='') 复制代码 服务端 复制代码 from socket import * import subprocess ip_port=('127.0.0.1',8080) BUFSIZE=1024 tcp_socket_server=socket(AF_INET,SOCK_STREAM) tcp_socket_server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) tcp_socket_server.bind(ip_port) tcp_socket_server.listen(5) while True: conn,addr=tcp_socket_server.accept() print('客户端',addr) while True: cmd=conn.recv(BUFSIZE) if len(cmd) == 0:break res=subprocess.Popen(cmd.decode('utf-8'),shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE) stderr=res.stderr.read() stdout=res.stdout.read() conn.send(stderr) conn.send(stdout) 复制代码 输出 客户端 复制代码 >>: ls 1.py 客户端.py 客户端1.py 客户端2.py 服务端.py >>: ifconfig en0 en0: flags=8863
mtu 1500 ether 78:4f:43:5b:a5:4c inet6 fe80::d0:d821:dbf0:3d67%en0 prefixlen 64 secured scopeid 0x5 inet 192.168.31.165 netmask 0xffffff00 broadcast 192.168.31.255 nd6 options=201
media: autoselect status: active >>: ifconfig lo0: flags=8049
mtu 16384 options=1203
inet 127.0.0.1 netmask 0xff000000 inet6 ::1 prefixlen 128 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1 nd6 options=201
gif0: flags=8010
mtu 1280 stf0: flags=0<> mtu 1280 en0: flags=8863
mtu 1500 ether 78:4f:43:5b:a5:4c inet6 fe80::d0:d821:dbf0:3d67%en0 prefixlen 64 secured scopeid 0x5 inet 192.168.31.165 netmask 0xffffff00 broadcast 192.168.31.255 nd6 options=201
media: autoselect status: active en1: flags=963
mtu 1500 options=60
ether e2:00:ec:98:eb:00 media: autoselect
status: inactive en3: flags=963
mtu 1500 options=60
ether e2:00:ec:98:eb:01 media: autoselect
status: inactive en2: flags=963
mtu 1500>>: >>: 复制代码 服务端 客户端 ('127.0.0.1', 58194) 上述程序是基于tcp的socket,在运行时会发生粘包 服务端 复制代码 from socket import * import subprocess ip_port=('127.0.0.1',9003) bufsize=1024 udp_server=socket(AF_INET,SOCK_DGRAM) udp_server.bind(ip_port) while True: #收消息 cmd,addr=udp_server.recvfrom(bufsize) print('用户命令----->',cmd) #逻辑处理 res=subprocess.Popen(cmd.decode('utf-8'),shell=True,stderr=subprocess.PIPE,stdin=subprocess.PIPE,stdout=subprocess.PIPE) stderr=res.stderr.read() stdout=res.stdout.read() #发消息 udp_server.sendto(stderr,addr) udp_server.sendto(stdout,addr) udp_server.close() 复制代码 客户端 复制代码 from socket import * ip_port=('127.0.0.1',9003) bufsize=1024 udp_client=socket(AF_INET,SOCK_DGRAM) while True: msg=input('>>: ').strip() udp_client.sendto(msg.encode('utf-8'),ip_port) data,addr=udp_client.recvfrom(bufsize) print(data.decode('utf-8'),end='') 复制代码 上述程序是基于udp的socket,在运行时永远不会发生粘包 注意注意注意: res=subprocess.Popen(cmd.decode('utf-8'), shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE) 的结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码且只能从管道里读一次结果 八、粘包 1.什么是粘包 粘包:发送方发送两个字符串”hello”+”world”,接收方却一次性接收到了”helloworld”。 只有TCP有粘包现象,UDP永远不会粘包。 所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。 补充: 分包:发送方发送字符串”helloworld”,接收方却接收到了两个字符串”hello”和”world”。 TCP是以段(Segment)为单位发送数据的,建立TCP链接后,有一个最大消息长度(MSS)。如果应用层数据包超过MSS,就会把应用层数据包拆分,分成两个段来发送。这个时候接收端的应用层就要拼接这两个TCP包,才能正确处理数据。 补充: 一个socket收发消息的原理 2.粘包如何产生 TCP为了提高网络的利用率,会使用一个叫做Nagle的算法。该算法是指,发送端即使有要发送的数据,如果很少的话,会延迟发送。如果应用层给TCP传送数据很快的话,就会把两个应用层数据包“粘”在一起,TCP最后只发一个TCP数据包给接收端。 tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。 两种情况下会发生粘包。 发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据了很小,会合到一起,产生粘包) 服务端 客户端 输出 服务端 -----> hellofeng #出现粘包现象 -----> 接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包) 服务端 客户端 输出 -----> he -----> llo feng 补充: recv里指定的1024意思是从缓存里一次拿出1024个字节的数据 send的字节流是先放入己端缓存,然后由协议控制将缓存内容发往对端,如果待发送的字节流大小大于缓存剩余空间,那么数据丢失,用sendall就会循环调用send,数据不会丢失 3.如何解决粘包问题 为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据 struct模块 该模块可以把一个类型,如数字,转成固定长度的bytes 复制代码 import json,struct #假设通过客户端上传1T:1073741824000的文件a.txt #为避免粘包,必须自定制报头 header={'file_size':1073741824000,'file_name':'/a/b/c/d/e/a.txt','md5':'8f6fbf8347faa4924a76856701edb0f3'} #1T数据,文件路径和md5值 #为了该报头能传送,需要序列化并且转为bytes head_bytes=bytes(json.dumps(header),encoding='utf-8') #序列化并转成bytes,用于传输 #为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节 head_len_bytes=struct.pack('i',len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度 #客户端开始发送 conn.send(head_len_bytes) #先发报头的长度,4个bytes conn.send(head_bytes) #再发报头的字节格式 conn.sendall(文件内容) #然后发真实内容的字节格式 #服务端开始接收 head_len_bytes=s.recv(4) #先收报头4个bytes,得到报头长度的字节格式 x=struct.unpack('i',head_len_bytes)[0] #提取报头的长度 head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式 header=json.loads(json.dumps(header)) #提取报头 #最后根据报头的内容提取真实的数据,比如 real_data_len=s.recv(header['file_size']) s.recv(real_data_len) 复制代码 示例: 我们可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,然后用struck将序列化后的数据长度打包成4个字节(4个自己足够用了) 发送时: 先发报头长度 再编码报头内容然后发送 最后发真实内容 接收时: 先手报头长度,用struct取出来 根据取出的长度收取报头内容,然后解码,反序列化 从反序列化的结果中取出待取数据的详细信息,然后去取真实的数据内容 服务端 客户端 输出 客户端 服务端 starting.... cliet addr ('127.0.0.1', 59162)